SIFT、PCA-SIFT、SURF 、ORB、 VJ 等目標(biāo)檢測算法優(yōu)缺點對比及使用場合比較
人體姿態(tài)估計便是計算機視覺領(lǐng)域現(xiàn)有的熱點問題,其主要任務(wù)是讓機器自動地檢測場景中的人“在哪里”和理解人在“干什么”
Adam 算法便以其卓越的性能風(fēng)靡深度學(xué)習(xí)領(lǐng)域,該算法通常與同步隨機梯度技術(shù)相結(jié)合,采用數(shù)據(jù)并行的方式在多臺機器上執(zhí)行
音樂科技、音樂人工智能與計算機聽覺以數(shù)字音樂和聲音為研究對象,是聲學(xué)、心理學(xué)、信號處理、人工智能、多媒體、音樂學(xué)及各行業(yè)領(lǐng)域知識相結(jié)合的重要交叉學(xué)科,具有重要的學(xué)術(shù)研究和產(chǎn)業(yè)開發(fā)價值
專家(查紅彬,陳熙霖,盧湖川,劉燁斌,章國鋒)從計算機視覺發(fā)展歷程、現(xiàn)有研究局限性、未來研究方向以及視覺研究范式等多方面展開了深入的探討
羅晶博士和楊辰光教授團隊提出,遙操作機器人系統(tǒng)可以自然地與外界環(huán)境進行交互、編碼人機協(xié)作任務(wù)和生成任務(wù)模型,從而提升系統(tǒng)的類人化操作行為和智能化程度
卡扣式裝配廣泛應(yīng)用于多種產(chǎn)品類型的制造中,卡扣裝配是結(jié)構(gòu)性的鎖定機制,通過一個機器學(xué)習(xí)框架將人類識別成功快速裝配的能力遷移到自主機器人裝配上。
基于行為序列的深度學(xué)習(xí)推薦模型搭配高性能的近似檢索算法可以實現(xiàn)既準(zhǔn)又快的召回性能,如何利用這些豐富的反饋信息改進召回模型的性能
機器人輔助穿衣通常人工的將衣服附在機器人末端執(zhí)行器上,忽略機器人識別衣服抓取點并進行抓取的過程,從而將問題簡化
百度AI開發(fā)平臺高級研發(fā)工程師餅干老師,為大家系統(tǒng)講解企業(yè)在AI模型開發(fā)中的難點,以及針對這些難點,百度EasyDL專業(yè)版又是如何解決的
SmartFog可以輕松地將人工智能分析微服務(wù)部署到云、霧和物聯(lián)網(wǎng)設(shè)備上,其架構(gòu)支持與現(xiàn)有系統(tǒng)的靈活集成,提供了大量的實現(xiàn)方案,要用下一代人工智能算法來彌補現(xiàn)有解決方案的不足。
深度學(xué)習(xí)對推動術(shù)前手術(shù)規(guī)劃尤其重要,手術(shù)規(guī)劃中要根據(jù)現(xiàn)有的醫(yī)療記錄來計劃手術(shù)程序,而成像對于手術(shù)的成功至關(guān)重要