中科院沈陽自動化所的Wang利用深度強化學習算法和視覺感知相結合的方法來完成移動機器人(如圖3(a))在非結構環(huán)境下的移動操作[7]。作者將移動操作過程看做一個標準的強化學習問題,首先通過雙目相機通過DOPE獲取目標物體的6D姿態(tài)p以及機器人本體的當前狀態(tài)st,接著通過基于PPO的強化學習算法預測機器人的本體,機械臂以及機械手的運動并控制機器人本體運動,最后機器人的運動狀態(tài)st+1和響應rt,其中響應主要包含了整個系統(tǒng)的控制響應rctrl、機械手末端的位置響應rdist以及抓取狀態(tài)rgrasp(如圖3(b))。最后作者在仿真環(huán)境和真實環(huán)境下測試了不同高度下的抓取成功率,在仿真中,立方體的抓取效果最好達到了90%的成功率,而球類物體較差僅有60%左右,而在實際測試過程中,在姿態(tài)估計正確的前提下可實現(xiàn)目標物體的成功抓取(如圖3(c)(d))。
在底層通過使用基于模型的操作單元,保證了手指與物體之間持續(xù)穩(wěn)定的抓。辉谥袑邮褂脧娀瘜W習進行規(guī)劃,從而實現(xiàn)較長和復雜的手內操作流程
人類可以通過視覺和觸覺融合感知快速確定抓取可變形物體所需力的大小,以防止其發(fā)生滑動或過度形變,但這對于機器人來說仍然是一個具有挑戰(zhàn)性的問題
能快速將現(xiàn)有算法在實際生產環(huán)境落地,并能利用GPU加速實現(xiàn)大規(guī)模計算,我們自己搭建了一個GPU加速的大規(guī)模分布式機器學習系統(tǒng),取名小諸葛
杜克大學的一種 AI 算法PULSE可以將模糊、無法識別的人臉圖像轉換成計算機生成的圖像,其細節(jié)比之前任何時候都更加精細、逼真
餓了么算法專家劉金介紹推薦業(yè)務背景,包括推薦產品形態(tài)及算法優(yōu)化目標;然后是算法的演進路線;最后重點介紹在線學習是如何在餓了么推薦領域實踐的
優(yōu)酷推薦業(yè)務,算法應用場景眾多,需求靈活多變,需要一套通用業(yè)務框架,支持運行時的算法流程的裝配,提升算法服務場景搭建的效率
通過分析其中的關鍵問題,建立了新熱內容曝光敏感模型,并最終給出一種曝光資源約束下的多目標優(yōu)化保量框架與算法
針對結算收銀場景中商品識別的難點,從商品識別落地中的模型選擇、數(shù)據(jù)挑選與標注、前端和云端部署、模型改進等方面,進行了深入講解
神經形態(tài)結構融合學習和記憶功能領域的研究主要集中在人工突觸的可塑性方面,同時神經元膜的固有可塑性在神經形態(tài)信息處理的實現(xiàn)中也很重要
機器學習就是通過經驗來尋找它學習的模式,而人工智能是利用經驗來獲取知識和技能,并將這些知識應用于新的環(huán)境
滴滴機器學習場景下的 k8s 落地實踐與二次開發(fā)的技術實踐與經驗,包括平臺穩(wěn)定性、易用性、利用率、平臺 k8s 版本升級與二次開發(fā)等內容
大型商用時序數(shù)據(jù)壓縮的特性,提出了一種新的算法,分享用深度強化學習進行數(shù)據(jù)壓縮的研究探索